
NOTATION 

c, heat capacity; D, diameter; F, area of the transverse cross section; G, flow rate; 
GrA, Grashof number; g, acceleration of gravity; h, enthalpy; p, pressure; N, perimeter; Re, 
Reynolds number; s, complex Laplace transform variable; T, temperature; t, time; x, distance 
along the channel; ~, thermal conductivity; m, circular frequency of the pulsations; and p, 
specific density. The indices denote the following: in, at the inlet to the channel; out, 
at the outlet from the channel; liq, the flow; 0, in front of the throttle at the channel in- 
put; m, the pseudocritical temperature; N, in front of the throttle at the channel output; 
w and c, the pipe wall. 

LITERATURE CITED 

i. P. J. Giarratano, V. D. Arp, and R. V. Smith, Cryogenics, ill, No. 5, 385-393 (1971). 
2. D. E. Deini, P. R. Ladtke, and M. K. Dzhouns, Teploperedacha, I01, No. I, 7-15 (1979). 
3. V. A. Bogachev, V. M. Eroshenko, and E. V. Kuznetsov, Inzh.-Fiz. Zh., 51, No. 5, 719- 

723 (1985). 
4. V. M. Eroshenko, E. V. Kuznetsov, and N. N. Yaroslavtseva, Inzh.-Fiz. Zh., 49, No. 5, 

727-733 (1985). 
5. P. A. Petrov, Hydrodynamics of a Flow-Through Boiler [in Russian], Moscow (1960). 
6. D. A. Labuntsov and P. A. Mirzoyan, Teploenergetika, No. ii, 57-59 (1985). 
7. N. A. Babakov et al., Theory of Automatic Control: Textbook for Institutions of Higher 

Learning, Part I. Theory of Linear Systems of Automatic Control [in Russian], A. A. 
Voronov (ed.), Moscow (1986). 

8. G. K. Filonenko, Teploenergetika, No. 4, 40-44 (1964). 
9. A. A. Samarskii and E. S. Nikolaev, Method for Solving Finite Difference Equations [in 

Russian], Moscow (1978). 
I0. V. A. Sukhov, "Investigation of the stability of water flow with supercritical parameters 

of state," Author's Abstract of Candidate's Dissertation, Technical Sciences, Moscow 
(198o). 

ii. L. Yu. Krasyakova and B. N. Glusker, Teploenergetika, No. ii, 41-46 (1963). 
12. K. Chzhou and N. Bau, Teploenergetika, 107, No. I, 110-116 (1985)o 

UNIVERSAL PROFILES AND LAW OF TURBULENT NEAR-WALL HEAT AND MASS TRANSFER 

V. F. Potemkin UDC 532.526 

Universal distributions that do not contain empirical constants are obtained 
in the turbulent core of the mean longitudinal velocity, temperature and con- 
centration of a substance for arbitrary Prandtl and Schmidt molecular numbers. 

The development of modern engineering in the domain that is characterized by the pres- 
ence of internal or external heat and mass transfer on streamlined surfaces is greatly re- 
tarded because there is no single description of this phenomenon for different values of the 
Pradtl and Schmidt numbers based on universal distributions of the velocity, temperature, and 
concentration of a substance that do not contain empirical constants, and a law of turbulent 
heat and mass transfer. Precisely the absence of experimental coefficients in such general- 
ized relationships permits their effective application in computations of complex flow condi- 
tions characteristic for energy-saving aggregates, consequently, setting up universal depen- 
dences is of great scientific and practical interest. An attempt is made in this paper to 
obtain such generalized relationships and the possibility is shown of their utilization to 
describe specific flows. 
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Applying the principle of superposition of molecular and turbulent viscosity and the 
conception of a viscous sublayer with different thicknesses for the hydrodynamic and thermal 
boundary layers, M. D. Millionshchikov [i] obtained general dependences of the heat and mass 
transfer on the Prandtl and Schmidt numbers by including both small, substantially less than 
one, and very much larger values than one. In this case 

Pr , + ] + p r 8  + ,  (i) O+=Aln 1 q - - - ~ ( y - - 8 + )  ' 

is valid for the temperature profile in a turbulent core, as is, correspondingly, the Stanton 
number 

St=  ___l___l = [ u ~ $  u~ (Aln I1 Jr -~-(a+--6~)Pr ] + Pr60T)]+ -1 . (2) 

Here the empirical constant is A : 2.57. For Pr ~ 1 60T = 60Pr "~ and for Pr < 1 60T : 
60, where 60 and 60T are the thicknesses of the hydrodynamic and thermal viscous sublayers. 

The temperature distribution (i) and the law of turbulent heat and mass transfer (2) 
(and its modification for the mean values of the velocity u and temperature v over the stream) 
are obtained without constructing interpolation formulas with additional test coefficients, 
and are of general nature and satisfactorily describe the known experimental data concerning 
simple flow types on a plate, in a pipe and a plane channel. If several perturbing factors 
such as a mass force field, nonisothermy, mass transfer on boundary surfaces, etc. act sepa- 
rately or simultaneously on the stream, then because of the empirical constant A the relation- 
ships (I) and (2) cannot be applied. 

Another more widespread viewpoint exists also [2, 3] according to which logarithmic tem- 
perature distributions hold in a turbulent boundary layer on the basis of similarity theory 

~+ = A In y+ H- B (Pr) (3) 
and 

~$ -- ~+ = -- A In (YI~T) + BI, (4) 

~.e. 

St = [u~ (A ln6~ + B(Pr) + BI)] -x. (5) 

Here A, Bx are empir ica l  constants ,  B is  an empir ica l  funct ion dependent on the molecular 
Vrandtly number Pr. The equation (3) refers to a zone located directly behind the transition 
domain, and (4) to the outer part of the boundary layer. 

The principal distinction between (i) and (3) is the absence of the empirical function 
B(Pr). For Pr(y +- 60T+)/A >> i 

~+ = A In (9+ -- 6+T ) -~ Pr 6+ q- A In Pr 
A 

(6) 

from (i), which corresponds to (3) for y+ ~ 60T+. 

Since (i), (2) and (3)-(5) are obtained, despite their differences, from authentic as- 
sumptions at a given level of development of the theory of the turbulent boundary layer, 
then it is conceivable that more general relationships can exist that do not contain the em- 
pirical constants, for which (1)-(5) are particular cases. 

Generalized profiles of the mean longitudinal velocity, temperature, and concentration 
of substance in a turbulent core [5] were obtained in a turbulent boundary layer model [4-7] 
representing a further development of the fundamental ideas of M. D. Millionshchikov [8, 9] 

u~ -- uoi _ In (y16o0 (7) 

'us i -- uoi In (~/~o,) 

where u I = u, u 2 = %, u s = c, 60z = 60, 602 = 60T , 603 = 60c, 6z = 6, 6 u = 6T, 63 = 6 c. The 
subscripts i = i, 2, 3 refer, respectively, to momentum, heat, and substance transfer. 
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For Pr - Sc = 1 [4, 6] 

u~--I  ln g+ 
---- (8) 

1 " 

Here ui+ = ui/u,i, u,1 = u,, u,2 = 8,, u,3 = c,. 

The expressions (7) and (8) act in the domain of the turbulent core, which corresponds 
approximately to a segment measured from the outer boundary to the Karman transition domain 
equal to 90-95% of the boundary layer thickness. Formula (7) is independent of the replace- 
ment of the scale 80i by any other belonging to the domain [50i~ 8i]" In this sense, such 
scales are equivalent [7]. The relationship (8) can be obtained from the assumption that the 
viscous scale s = v/u, can also be equivalent to the scale for (7). Then according to [7], 
upon replacement of 50i by s in (7), the expression (8) is obtained directly which describes 
specific profiles, as does (7), in a turbulent core, for instance in the segment [60i+, 8i +] 
when the Karman transition domain is neglected. 

Known logarithmic representations of the mean temperature (3) and (4) satisfy (7) since 
upon substitution of %+, ~0T +, and %8T + determined from (3) or (4) into the left side of (7) 
an equation identical to (7) is obtained for the temperature profile 

- ( 9 )  

At first glance, the independence of the general expression (7) from the molecular Prandtl 
Pr and Schmidt Sc numbers is justified since the empirical function B(Pr) in (3) that takes 
account of the temperature profile deformation because of a change in the number Pr was elim- 
inated from the consideration upon going from (3) over to (9). 

In turn, utilization of (i) for substitution in (7) yields another result 

Pr ~ + 
O+ _ @+T - In [I + -~--(y. -- 60r ] (10) 

[ 1' Pr (6~- --5+,) 

where %0T + = PrSoT+ according to [!]. 

The question arises of the applicability of (9) and (I0). The presence of the experi- 
mental coefficient A in (i0) constrains the possibility of utilization of this equation but 
because of the presence of the Prandtl number its informability is expanded as compared to 
(9). In this sense both relationships are not fundamental. 

From general considerations universal expressions for the profiles of the velocity, tem- 
perature, and concentration of a substance should not contain empirical constants but they 
include the criterial number v/v i to take account of the specifics of a portable substance. 
Here v I = v, v 2 = a, v 3 = D, i.e., v/v I = i, v/v 2 = v/a = Pr, v/v 3 = v/D = Sc. Then on the 
basis of the model [4-7] 

l n [ (  v ,  g, 8oz) 
u~--Uo~ = v~ (ii) 

u6i--u~ l n f (  v , 5i, 6oe) v~ 

by analogy with (7) and (i0). Here, since v/v I = v/v = 1 for the velocity profile and 80i = 
s ~ v/u, for a zero pressure gradient, the expression (ii) should go over into (7) and then 
into (8). For the profiles of the temperature and the concentration of substance, (ii) should 
also be transformed into (7) and (8) for v/v 2 = Pr = 1 and v/v 3 = Sc = i. 

The function f in (Ii) should take account of the characteristics features of the func- 
tion f in (9) and (i0) since they are particular cases of (ii). Measurement of the distance 
y on the basis of (i0) is made from the boundaries 60i of the viscous sublayers, i.e., the 
argument is in the form of the difference y - 80i. Since it should also be dimensionless, 
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in the general case according to (9) it takes the form of the ratio (y - 6oi)/60i. Taking 
account of the criterial numbers v/v i as in (i0) can be realized by multiplying the argument 
(y - 60i)/60i by v/~i" ~herefore, the function f in a first approximation will have the form 

/ =  ? (Y- -6~  + l ' v i  6o~ 

where analogously to (i0) the component equal to one is selected from the condition corre- 
sponding to the fact that %i + = ~0i + for y = 60i and, respectively, inf(y = 60i) = 0. 

Then the generalized profiles of the mean longitudinal velocity, temperature and con- 
centration of a substance in a turbulent core will have a single form independently of the 
values of the Prandtl Pr and Sehmidt Sc numbers: 

6oi - + I 
U~--Uoi -----Ui=R~----- (12) 

[( )j u6 i-uo~ In ---~ 8 , - - 6 o , )  + 1 . 

The d i s t r i bu t i on  of the mean longi tudina l  ve loc i ty  (the subscr ip t  i = 1) from (12) is 
derived by substituting v I = v, ul = u, then 

u--u~ -----U=R-'--- ln(Y/6o) 
u~--Uo ln(6/6o) 

(13) 

which is identical to (7), and then 6o is replaced by s for a zero pressure gradient: 

In y+ u+--I  - - U = R - -  , (14) 
u+ -- 1 In 8+ 

which agrees with (8).  

The mean temperature distribution (subscript i = 2) can be obtained from (12) by taking 
into account that v/v 2 = v/a = Pr, u 2 = %, 62 = 6T, 6o2 = 60T: 

~%--~oT __ 6 ) =  Ro---- 6oT ] + 1 
-- (15) 

~}%--t%T ln[Pr ( 6,--6oT8o, ) + 1] 

For Pr = i, (9) follows directly from (15). 

According to [i], 60T = 60 for Pr ! i, i.e., the thickness of the thermal viscous sub- 
layer equals the thickness of the hydrodynamic viscous sublayer. Taking into account that 
the viscous scale s = v/uo. can be equivalent to the scale 60, which would hold when going 
from (7) to (8) when the functions 60i would be replaced by s 

9 + -- t~ + (y+ = 1) 
~ - -  0 + (y+ = 1) 

can be obtained analogously from (15). 

Since 

= ln [Pr (y+- - l )+  II (16) 
in [Pr (8 + --  1) + 11 

~+ = PrY+ (17) 

for molecular transfer near the wall where the Fourier law operates [2], then from (16) 

t~+--Pr --@----/~o~- ln lPr (y+ -- l) + l] 
,~}~ -- Pr In [Pr (6 + -- 1) + 11 

(18) 
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Formula (18) is the universal temperature profile in a turbulent core for Pr 5 i. As 
Pr § 1 (18) goes over into (8): 

In g+ @+-- 1 _ _ ~  = ke~. .~  (19) 

Separating the functions ui, y running over the section in (12) from the boundary u6i , 
6 i on the main flow side, we can obtain 

(20 )  
u+~ - -  u+o~ - ~ (x, v) = ~8, (x) ~ u~ - u~ ' 

where ~l = ~, ~72 = X, '3  = ~ are criterial functions of the turbulent core that remain con- 
stant within it and equal to eigenvalues on the outer boundary for y = 6 i. 

From (20) for the momentum transfer 

for zero pressure gradient 

l n ( g / 6 o ) _ _ W ~ ,  v ) =  ~ ( x ) ~  ln(6/8o) (21 )  , 

lnS+ (22) lng+ _--~(x, y ) = ~ 6 ( x ) - -  u{ 1 ' 
u + _ l  

for heat transport for arbitrary values of Pr 

In - 6 o Q  + 1] 
: 

#+  _ # ~  = x (x, v) = x+~ (x) --_= + # ~  ~ -- 

for Pr 5 1 

In [Pr (g+ - -  1) + 1 ] 
~'+ - -  Pr ---- ~ (x, g)  = X~ T (x) 

for substance transport for any Sc 

In [Pr (5 + --  1) + 1] (24) 
Pr 

for Sc <_ i 

] l i )] 5oo + 1  in Sc 5o--5o~ + 1  
c+ c +  --= p ' ( z ' v ) = ~ ( x ) -  , 5o~ , 

_ - -  c +  - -  Co+ c 6e 
(25) 

In [Sc(g+-- I ) +  II -~O(x, V) = ~c  (x) --~ ln[Sc(5~-- 1) + II (26) 
c+- -Sc  c~ - -Sc  

Expanding the  runn ing  c r i t e r i a l  f u n c t i o n s  ~ i ( x ,  y) in  ( 2 1 ) - ( 2 6 ) ,  l o g a r i t h m i c  d i s t r i b u -  
t i o n s  of the velocity, temperature, and concentration of substance can be obtained in contrast 
to the formulas (i), (3), (4) of similar form but not containing empirical constants. The 
temperature profiles transformed from (23) and (24) have the form 

~ + _  I in [pr(g--60T) ] 
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for Pr 5 1 

g~ 
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Fig. 1 Fig. 

Fig. i. Temperature profiles O(~O) for mercury flow 
0.026) in a circular tube from the data presented in 
i) Re = ii0"i0 ~, X6T = 0.41; 2) 130"103 and 0.45; 3) 
tation using (18). 

Fig. 2. The dependence of x(R 8) on the selection of ~0T + 
and O0T + according to the data of [12] for water flow in a 
plane channel for Pr w = 6.14: i) 60T + = 7.5, O0T + = 46.0, 
X6T = 0.35; 2) 8.0; 49.12 and 0.41; 3) 9.2; 53.9 and 0.59; 
4) computation using (23). 
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2 
(Pr = 
[I0]: 
compu- 

6+_ t ln[Pr(y+--  1) + 11 + Pr. (28) 

On the basis of [6] the analogy between turbulent momentum, heat, and substance trans- 
port will have the form 

Prt = ~6 X~T 

f~c 

(29) 

(30) 

For a zero pressure gradient in (29) and (30) T 6 = ~6, for Pr E i X6T = X6T and for Sc~ i 

~6c = ~6c" 
The law of turbulent near-wall heat transport should set up a connection between the 

temperature drop %~T = Tw - T~T and the characteristic temperature %, = qw/pCpU,. From (21), 
(29), and (23) 

Prt(%+--u0 +) In [Pr(6T--60T) +1]  
+ Tw--T~T [ k ~o~ + 0 + .  (31) 

%~ -~ 6 ,  " = In (~/8o) 

Correspondingly, the law of near-wall mass transfer tha t displays the connection between the 
difference of the relative mass concentrations of passive impurity C6c = m w - m6c and the 

characteristic concentration c, = jw/0U, has the following form on the basis of (21), (30), 
and (25) 

m~ (32) 
c~  ~ c ,  = In (8/8o) -}- c + .  

The law (31), 
sions for the criterial Stanton numbers St = i/u6+%6T + and St c 

(32) can also be represented traditionally in the form of appropriate expres- 

= i/u6+C6c +. 
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+l 
I m~ 3 

Fig. 3. Temperature profiles O(R 8) 
for water flow in a plane channel 
according to data from [12]: i) 

Pr w = 6.33, X6T ~ 0.43, 60T + = 7.5; 
2) 6.14; 0.41 anu 8.0; 3) 6.76; 
0.41 and 7.0; 4) computation using 
(15). 

The temperature distribution (18) for Pr 5 1 is compared in Fig. i with the experimental 
data represented in [I0] and concerning the flow of mercury in a circular tube (Pr = 0.026). 
The domain ~0 [0.7; 1.0] corresponds to the turbulent core. The satisfactory correlation is 
seen between the universal distribution (18) not containing empirical constants and the data 
presented. Values of the criterial function X6T for P << 1 here correspond to the values of 
X6T for Pr = 1 mentioned in [6]. 

Since the dynamic criterial function W 6 in (29) is independent of Pr while the values 
of the thermal criterial function X6T remain practically constant for Pr ~ i, then Pr t in 

(29) is also independent of the molecular Prandtl number or is a weak function of it. Anal- 
ogously it can be considered for Pr > ! that X6T equal the values Pr ~ 1 under identical flow 
conditions, which substantially simplifies the temperature profile computation when using the 
relationships (15). 

The principal distinction between (15) which is true for arbitrary values of Pr and its 
particular case (18) corresponding to Pr ~ 1 is the presence of the boundary function 60T 
that is physically the thickness of the thermal viscous sublayer, 60T + ~ i0 here according 
to [i]. 

By knowing the temperature profile T(y) on some section of the turbulent core, 60T+ can 
be determined by a selection method by a methodology analogous to [ii] on the basis of (15), 
where the value obtained will be unique. As an illustration (Fig. 2), the data of [12] were 
processed the concern the turbulent heat transfer for water flow in a plane channel (Pr w = 
6.14). Satisfaction of (15), or the identical equation (23) that is more convenient for this 
case, was confirmed upon assigning arbitrary values of 60T+~ The running values of X(X, y) 
in (23) should remain constant in R 0 [0.7; 1.0]. It is seen from Fig. 2 that upon giving 
60T + = 9.2, then dx/dR < 0 in the turbulent core, while dx/dR > 0 for 60T + = 7.5 and only 
for 60T +=8.0 inR 0 [0.7; 1.0] is dx/dR =0, X =const, which corresponds to (23). Because of the ab- 
sence of experimental values of %o + in [12] for ~0T + = 7.5 and 8.0, the Fourier law (17) was 
used in this example to determine 90T +. 

Represented in Fig. 3 in the form of the dependence @(R@) are all the temperature pro- 
files [12] for water flow (Pr w = 6.14-6.76) in a plane channel. In the turbulent core (0.7 
R@ ! 1.0) the presented data are described satisfactorily by the universal distribution (15). 
The closeness of the calculated values X6T = 0.41-0.43 for Pr > 1 (Fig. 3) to the values X6T = 
0.41-0.45 for Pr < 1 (see Fig. i) is in complete conformity with the analogy between the tur- 
bulent momentum transport and the heat (29). 

Under complex flow conditions when one or several perturbing factors act on the stream, 
the universal profiles of the mean longitudinal velocity, the temperature, the concentration 
of substance, and the law of turbulent near-wall heat and mass transfer obtained can be uti- 
lized effectively by using the method elucidated in [6] since the relationships themselves 
do not change because of the absence of empirical constants therein, but the specifics of the 
perturbing action is taken into account in changes in the values of the criterial boundary 
functions W6i" 

The results of this paper simplify the computation of the necessary characteristics for 
near-wall turbulent heat and mass transfer for different values of the molecular Prandtl and 
Schmidt numbers. 

NOTATION 

x, coordinate along the streamlined wall, m; y, coordinate along the normal to the wall, 
m; 6, 6T, 6c, respectively, the dynamic, thermal, and diffusion boundary layer thicknesses, 
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m; 60, ~0T, 60c, respectively, the dynamic, thermal, and diffusion viscous sublayer thick- 
nesses; E, = v/u,, viscous scale, m; y+ = y/~,, dimensionless distance from the wall; u, mean 
longitudinal velocity, m/sec; 8 = T w - T, mean temperature measured from the wall, K; c = 
m w - m, mean relative mass concentration of passive impurity measured from the wall; p, den- 
sity, kg/m3; cp, specific heat, J/(kg'K); v, kinematic viscosity coefficient, m2/sec; a, 
thermal diffuslvity coefficient, m2/sec; D, diffusion coefficient, m2/sec; Pr = v/a, Sc = 
v/D; respectively, the molecular Prandtl and Schmidt numbers; Prt, Sct, turbulent Prandtl and 
Schmidt numbers, respectively; Tw, tangential stress at the wall, N/m2; qw, heat flux density 
at the wall, W/m2; Jw, mass flux density of the transportable passive impurity at the wall, 

kg/(m2.sec); u.~ =~w7~, dynamic velocity,m/sec; ~. = qw/pCpU..., characteristic temperature, K; 
c, = jw/PU,, characteristic relative mass concentration; u +'= u/u,, 8 + = 8/8..., c + = c/c,, re- 
spectively, the dimensionless velocity, temperature, and concentration; St ="i/u6+~6T+,'Stan- 
ton number; St c =I/u6+c6c +, Stanton diffusion number; �9 = in(y/60)/(u + - u0+), X = In [Pr(y - 

60T)/60T + 1]/(8 + -80T+), ~ = in[Sc(y - 60c)/60c + l]/(c + - C0c+) , respectively, the dynamic, 
thermal, and diffusion criterial functions of the turbulent core; ~ = in y+/(u + - i), dynamic 

criterial function for zero pressure gradient; X = in[Pr(y + - i) + 1]/(8 + - Pr), ~ =In[Sc(y +- 

i) + l]/(c + - Sc), thermal and diffusion criterial functions for Pr 5 I, Sc 5 i; U = (u - u0)/ 
(u6 - u0), 0 = (8 - 80T)(86T - 80T), generalized dimensionless velocity and temperature; R = 

in(y/60)/in(6/60), R e = in[Pr(y - 60T)/60T + l]/in[Pr(6 T - 60T)/~0T + i], generalized dimen- 
sionless coordinates in the dynamic and thermal boundary layers; U = (u+ -.l)/(u~ - i), gen- 
eralized dimensionless velocity at zero pressure gradient; 0 = (8+ -- Pr)/(8~T -- Pr), general- 

ized dimensionless temperature for Pr ~ i; R = in y+/in ~+, R@ = in[Pr(y + - i) + l]/in[Pr(6~-- 
i) + i], generalized dimensionless coordinates in the dynamic and thermal boundary layers. 
Subscripts 6, 6T, 6c, flow parameters for y = 6, y = 6T, y = 6c, respectively; 0, OT, Oc, 
flow parameters, respectively, for y = 60 , y = 60T, y = 60c; t, turbulent core parameter; 
w, wall parameter; T, O, thermal layer parameters; c, diffusion layer parameter; i, transfer 
parameter of the i-th substance; i = I, 2, 3, respectively, the momentum, heat, and substance 
transfer. 
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